Abstract
Optical character recognition (OCR) quality, especially for under-resourced scripts like Bangla, as well as for documents printed in old typefaces, is a major concern. An efficient and effective pipeline for OCR betterment is proposed here. The method is unsupervised. It employs a baseline OCR engine as a black box plus a dataset of unlabeled document images. That engine is applied to the images, followed by a visual encoding designed to support efficient word spotting. Given a new document to be analyzed, the black-box recognition engine is first applied. Then, for each result, word spotting is carried out within the dataset. The unreliable OCR outputs of the retrieved word spotting results are then considered. The word that is the centroid of the set of OCR words, measured by edit distance, is deemed a candidate reading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.