Abstract
This paper extends our previous work on the potential of EEG-based brain computer interfaces to segment salient objects in images. The proposed system analyzes the Event Related Potentials (ERP) generated by the rapid serial visual presentation of windows on the image. The detection of the P300 signal allows estimating a saliency map of the image, which is used to seed a semi-supervised object segmentation algorithm. Thanks to the new contributions presented in this work, the average Jaccard index was improved from 0.47 to 0.66 when processed in our publicly available dataset of images, object masks and captured EEG signals. This work also studies alternative architectures to the original one, the impact of object occupation in each image window, and a more robust evaluation based on statistical analysis and a weighted F-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.