Abstract
This paper describes three developments to improve object detection performance using genetic programming. The first investigates three feature sets, the second investigates a new fitness function, and the third introduces a two phase learning method using genetic programming. This approach is examined on three object detection problems of increasing difficulty and compared with a neural network approach. The two phase GP approach with the new fitness function and the local concentric circular region features achieved the best results. The results suggest that the concentric circular pixel statistics are more effective than the square features for these object detection problems. The fitness function with program size is more effective and more efficient than without for these object detection problems and the evolved genetic programs using this fitness function are much shorter and easier to interpret. The two phase GP approach is more effective and more efficient than the single stage GP approach, and also more effective than the neural network approach on these problems using the same set of features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.