Abstract
Semi-supervised training methods need reliable pseudo labels for unlabeled data. The current state-of-the-art methods based on pseudo labeling utilize only high-confidence predictions, whereas poor confidence predictions are discarded. This paper presents a novel approach to generate high-quality pseudo labels for unlabeled data. It utilizes predictions with high- and low-confidence levels to generate refined labels and then validates the accuracy of those predictions through bi-directional object tracking. The bi-directional object tracker leverages both past and future information to recover missing labels and increase the accuracy of the generated pseudo labels. This method can also substantially reduce the effort and time needed in label creation compared to the conventional manual labeling. The proposed method utilizes a buffer to accumulate detection labels (bounding boxes) predicted by the object detector. These labels are refined for accuracy though forward and backward tracking, ultimately constructing the final set of pseudo labels. The method is integrated in the YOLOv5 object detector and tested on the BDD100K dataset. Through the experiments, we demonstrate the effectiveness of the proposed scheme in automating the process of pseudo label generation with notably higher accuracy than the recent state-of-the-art pseudo label generation schemes. The results show that the proposed method outperforms previous methods in terms of mean average precision (mAP), label generation accuracy, and speed. Using the bi-directional recovery method, an increase in mAP@50 for the BDD100K dataset by 0.52% is achieved, and for the Waymo dataset, it provides an improvement of mAP@50 by 8.7% to 9.9% compared to 8.1% of the existing method when pre-training with 10% of the dataset. An improvement by 2.1% to 2.9% is achieved as compared to 1.7% of the existing method when pre-training with 20% of the dataset. Overall, the improved method leads to a significant enhancement in detection accuracy, achieving higher mAP scores across various datasets, thus demonstrating its robustness and effectiveness in diverse conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.