Abstract

Nuclear reaction data required for astrophysics and applications is incomplete, as not all nuclear reactions can be measured or reliably predicted. Neutron-induced reactions involving unstable targets are particularly challenging, but often critical for simulations. In response to this need, indirect approaches, such as the surrogate reaction method, have been developed. Nuclear theory is key to extract reliable cross sections from such indirect measurements. We describe ongoing efforts to expand the theoretical capabilities that enable surrogate reaction measurements. We focus on microscopic predictions for charged-particle inelastic scattering, uncertainty-quantified optical nucleon-nucleus models, and neural-network enhanced parameter inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.