Abstract

Parallel magnetic resonance imaging (pMRI) accelerates data acquisition by undersampling k-space through an array of receiver coils. Finding accurate relationships between acquired and missing k-space data determines the interpolation performance and reconstruction quality. Autocalibration signals (ACS) are generally used to learn the interpolation coefficients for reconstructing the missing k-space data. Based on the estimation-approximation error analysis in machine learning, increasing training data size can reduce estimation error and therefore enhance generalization ability of the interpolator, but scanning time will be longer if more ACS data are acquired. We propose to augment training data using unacquired and acquired data outside of ACS region through semi-supervised learning idea and autoregressive model. Local neighbor unacquired k-space data can be used for training tasks and reducing the generalization error. Experimental results show that the proposed method outperforms the conventional methods by suppressing noise and aliasing artifacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.