Abstract
AbstractThe aim of this work is to investigate the hardness of the discrete logarithm problem in fields GF(\(p^n\)) where \(n\) is a small integer greater than \(1\). Though less studied than the small characteristic case or the prime field case, the difficulty of this problem is at the heart of security evaluations for torus-based and pairing-based cryptography. The best known method for solving this problem is the Number Field Sieve (NFS). A key ingredient in this algorithm is the ability to find good polynomials that define the extension fields used in NFS. We design two new methods for this task, modifying the asymptotic complexity and paving the way for record-breaking computations. We exemplify these results with the computation of discrete logarithms over a field GF(\(p^2\)) whose cardinality is 180 digits (595 bits) long.KeywordsPrime IdealAlgebraic NumberDiscrete LogarithmDiscrete Logarithm ProblemDecimal DigitThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.