Abstract
Ultrasound-guided percutaneous interventions have numerous advantages over traditional techniques. Accurate needle placement in the target anatomy is crucial for successful intervention, and reliable visual information is essential to achieve this. However, previous studies have revealed several challenges, such as the variability in needle echogenicity and the common misalignment of the ultrasound beam and the needle. Advanced techniques have been developed to optimize needle visualization, including hardware-based and image-processing-based methods. This paper proposes a novel strategy of integrating ultrasound-based deep learning approaches into an optical navigation system to enhance needle visualization and improve tip positioning accuracy. Both the tracking and detection algorithms are optimized utilizing optical tracking information. The information is introduced into the tracking network to define the search patch update strategy and form a trajectory reference to correct tracking results. In the detection network, the original image is processed according to the needle insertion position and current position given by the optical localization system to locate a coarse region, and the depth-score criterion is adopted to optimize detection results. Extensive experiments demonstrate that our approach achieves promising tip tracking and detection performance with tip localization errors of 1.11 ± 0.59 mm and 1.17 ± 0.70 mm, respectively. Moreover, we establish a paired dataset consisting of ultrasound images and their corresponding spatial tip coordinates acquired from the optical tracking system and conduct real puncture experiments to verify the effectiveness of the proposed methods. Our approach significantly improves needle visualization and provides physicians with visual guidance for posture adjustment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.