Abstract

This paper proposes feature augmentation methods using unlabeled data and several Named Entity (NE) extractors. We collect NE-related information of each word (which we call NE-related labels) from unlabeled data by using NE extractors. NE-related labels which we collect include candidate NE class labels of each word and NE class labels of co-occurring words. To accurately collect the NE-related labels from unlabeled data, we consider methods to collect NE-related labels by using outputs of several NE extractors. We use NE-related labels as additional features for creating new NE extractors. We apply our NE extraction methods using the NE-related labels to IREX Japanese NE extraction task. The experimental results show better accuracy than the previous results obtained with NE extractors using handcrafted resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.