Abstract

Accurate segmentation of the left ventricle myocardium in cardiac CT angiography (CCTA) is essential for e.g. the assessment of myocardial perfusion. Automatic deep learning methods for segmentation in CCTA might suffer from differences in contrast-agent attenuation between training and test data due to non-standardized contrast administration protocols and varying cardiac output. We propose augmentation of the training data with virtual mono-energetic reconstructions from a spectral CT scanner which show different attenuation levels of the contrast agent. We compare this to an augmentation by linear scaling of all intensity values, and combine both types of augmentation. We train a 3D fully convolutional network (FCN) with 10 conventional CCTA images and corresponding virtual mono-energetic reconstructions acquired on a spectral CT scanner, and evaluate on 40 CCTA scans acquired on a conventional CT scanner. We show that training with data augmentation using virtual mono-energetic images improves upon training with only conventional images (Dice similarity coefficient (DSC) 0.895 ± 0.039 vs. 0.846 ± 0.125). In comparison, training with data augmentation using linear scaling improves the DSC to 0.890 ± 0.039. Moreover, combining the results of both augmentation methods leads to a DSC of 0.901 ± 0.036, showing that both augmentations lead to different local improvements of the segmentations. Our results indicate that virtual mono-energetic images improve the generalization of an FCN used for myocardium segmentation in CCTA images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.