Abstract

Multi-Model Ensembles (MMEs) are used for improving the performance of GCM simulations. This study evaluates the performance of MMEs of precipitation, maximum temperature and minimum temperature over a tropical river basin in India developed by various techniques like arithmetic mean, Multiple Linear Regression (MLR), Support Vector Machine (SVM), Extra Tree Regressor (ETR), Random Forest (RF) and long short-term memory (LSTM). The 21 General Circulation Models (GCMs) from National Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset and 13 GCMs of Coupled Model Inter-comparison Project, Phase 6 (CMIP6) are used for this purpose. The results of the study reveal that the application of a LSTM model for ensembling performs significantly better than models in the case of precipitation with a coefficient of determination (R2) value of 0.9. In case of temperature, all the machine learning (ML) methods showed equally good performance, with RF and LSTM performing consistently well in all the cases of temperature with R2 value ranging from 0.82 to 0.93. Hence, based on this study RF and LSTM methods are recommended for creation of MMEs in the basin. In general, all ML approaches performed better than mean ensemble approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.