Abstract

The current trend towards living in big cities contributes to an increased demand for efficient and sustainable space and resource allocation in urban environments. This leads to enormous pressure for resource minimization in city planning. One pillar of efficient city management is a smart intermodal traffic system. Planning and organizing the various kinds of modes of transport in a complex and dynamically adaptive system such as a city is inherently challenging. By deliberately simplifying reality, models can help decision-makers shape the traffic systems of tomorrow. Meanwhile, Smart City initiatives are investing in sensors to observe and manage many kinds of urban resources, making up a part of the Internet of Things (IoT) that produces massive amounts of data relevant for urban planning and monitoring. We use these new data sources of smart cities by integrating real-time data of IoT sensors in an ongoing simulation. In this sense, the model is a digital twin of its real-world counterpart, being augmented with real-world data. To our knowledge, this is a novel instance of real-time correction during simulation of an agent-based model. The process of creating a valid mapping between model components and real-world objects posed several challenges and offered valuable insights, particularly when studying the interaction between humans and their environment. As a proof-of-concept for our implementation, we designed a showcase with bike rental stations in Hamburg-Harburg, a southern district of Hamburg, Germany. Our objective was to investigate the concept of real-time data correction in agent-based modeling, which we consider to hold great potential for improving the predictive capabilities of models. In particular, we hope that the chosen proof-of-concept informs the ongoing politically supported trends in mobility—away from individual and private transport and towards—in Hamburg.

Highlights

  • IntroductionThe decision-making process is guided by personal preferences

  • How does a person in a city, e.g., a resident or a tourist, decide which mode of transportation to choose for a given trip? Likely, the decision-making process is guided by personal preferences

  • We propose the hypothesis that agent-based models (ABMs) are especially well-suited for integrating sensor data, and that considering real-time data within ABMs can help reduce uncertainties of simulation results, thereby increasing their credibility and trustworthiness in the eyes of decision-makers and stakeholders

Read more

Summary

Introduction

The decision-making process is guided by personal preferences. How does a person in a city, e.g., a resident or a tourist, decide which mode of transportation (or a combination thereof) to choose for a given trip? These might be tied to external factors: perhaps the sun is shining today, or some exercise might be good. In such a scenario, one might choose to travel, for example, by bicycle as opposed to by car, bus, or train. Models that are designed to simulate the future of their real-world counterparts might provide valuable predictive insights, Sustainability 2021, 13, 7000.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call