Abstract

Faced with increasing global soil degradation, spatially explicit data on cropland soil organic matter (SOM) provides crucial data for soil carbon pool accounting, cropland quality assessment and the formulation of effective management policies. As a spatial information prediction technique, digital soil mapping (DSM) has been widely used to spatially map soil information at different scales. However, the accuracy of digital SOM maps for cropland is typically lower than for other land cover types due to the inherent difficulty in precisely quantifying human disturbance. To overcome this limitation, this study systematically assessed a framework of “information extraction-feature selection-model averaging” for improving model performance in mapping cropland SOM using 462 cropland soil samples collected in Guangzhou, China in 2021. The results showed that using the framework of dynamic information extraction, feature selection and model averaging could efficiently improve the accuracy of the final predictions (R2: 0.48 to 0.53) without having obviously negative impacts on uncertainty. Quantifying the dynamic information of the environment was an efficient way to generate covariates that are linearly and nonlinearly related to SOM, which improved the R2 of random forest from 0.44 to 0.48 and the R2 of extreme gradient boosting from 0.37 to 0.43. Forward recursive feature selection (FRFS) is recommended when there are relatively few environmental covariates (<200), whereas Boruta is recommended when there are many environmental covariates (>500). The Granger-Ramanathan model averaging approach could improve the prediction accuracy and average uncertainty. When the structures of initial prediction models are similar, increasing in the number of averaging models did not have significantly positive effects on the final predictions. Given the advantages of these selected strategies over information extraction, feature selection and model averaging have a great potential for high-accuracy soil mapping at any scales, so this approach can provide more reliable references for soil conservation policy-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.