Abstract
A novel processing strategy was proposed, first to promote Mn partitioning behavior during intercritical annealing, second to improve the fraction and stability of retained austenite (RA) and third to enhance mechanical properties of Mn-reduced transformation-induced plasticity (TRIP) steel. By deliberately preparing large-fractioned Mn-enriched cementite before final annealing, the intercritical austenite was encouraged to inherit relatively high Mn content from pre-existing cementite. Eventually, the formation of sufficiently stable RA together with the precipitation of fine VC particles in ferritic matrix contributes to much better yield strength-tensile strength-ductility combination of 763 MPa-1022 MPa-46.4%, which is superior to many steels containing higher Mn concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.