Abstract

Flaky microwave absorbing materials based on Ce2Co17 with different addition of Ni content were fabricated successfully using the method of vacuum arc melting and high energy ball milling. The phase structure, grain morphology, electromagnetic parameters and reflection loss (RL) were probed by the corresponding equipment and computational simulation software. The RL values of Ce2Co17−xNix alloys that exceeded − 10 dB were observed in the frequency range of 6.16–10.24 GHz with a thickness of only 1.8 mm. Besides, via adjusting the thickness to only 1.6 mm, the minimum RL of Ce2Co16.6Ni0.4 powder was as high as − 44.29 dB at 9.6 GHz with a broad bandwidth of 3.04 GHz. Furthermore, the different weight ratio for Ce2Co16.6Ni0.4/carbonyl iron powder composite was also studied. The microwave absorption peak of composite shifts to a higher frequency region with the increasing weight ratio of carbonyl iron powder. More importantly, the effective bandwidth of the composite with the Ce2Co16.6Ni0.4/carbonyl iron powder weight ratio of 50:50 can be obtained at about 4.64 GHz, manifesting that composite can be provided with excellent microwave absorption bandwidth by adjusting the weight ratio of carbonyl iron powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.