Abstract
AbstractMelt strength of polylactic acid (PLA) was improved through various modifications including grafting, crosslinking, chain extension, blending, plasticizing and nucleation. The results showed that melt strength was increased, to varying degrees, by crosslinking, chain extension and blending. In addition, melt strain (detected by velocity) was increased by chain extension, blending with elastomer, and plasticizing, but was decreased by crosslinking. The molecular weights, thermal properties and viscosity of the modified PLAs were also studied to investigate the causes of the observed variations in melt strength. Viscosity results generally corresponded with that of melt strength, but not with that of melt strain. With the exception of plasticizing and nucleation, the modifications had no significant effect on the thermal properties of PLA. The molecular weight (in particular the extremely large molecules representing by Mz) and the polydispersity of PLA were significantly increased after crosslinking and chain extension, which accounts for the observed increase in melt strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.