Abstract

AbstractCarbon fiber (CF) reinforced matrix composites have been applied widely, however, the interfacial adhesion of composites is weak due to smooth and chemically inert of CF surface. To solve this problem, A polydopamine/nano‐silica (PDA‐SiO2) interfacial layer on carbon fiber surface was constructed via polydopamine and nano‐ SiO2 (CF‐PDA‐SiO2) by a facile and effective method to reinforce polyamide 6 composites (CFs/PA6). The effects of PDA‐SiO2 interfacial layer on crystallization structure and behavior, thermal properties, and mechanical properties of CFs/PA6 composites were investigated. Furthermore, interfacial reinforcement mechanism of composites has been discussed. This interfacial layer greatly increased the number of active groups of CF surface and its wettability obviously. The tensile strength of CF‐PDA‐SiO2/PA6 composites increased by 28.09%, 19.37%, and 26.22% compared to untreated‐CF/PA6, CF‐PDA/PA6, and CF‐SiO2/PA6 composites, respectively, which might be caused by the increased interfacial adhesion between CF and PA6 matrix. The thermal stability, crystallization temperature, crystallinity, and glass transition temperature (Tg) of CF‐PDA‐SiO2/PA6 composites improved correspondingly, attributing to the heterogeneous nucleation of nano‐SiO2 in the crystalline area and hydrogen bonds with molecular chains of PA6 in the amorphous area. This work provides a novel strategy for the construction of interfaces suitable for advanced CF composites with different structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.