Abstract
MapReduce has become an important distributed processing model for large-scale data-intensive applications like data mining and web indexing. Hadoop-an open-source implementation of MapReduce is widely used for short jobs requiring low response time. The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous in nature. Data locality has not been taken into account for launching speculative map tasks, because it is assumed that most maps are data-local. Unfortunately, both the homogeneity and data locality assumptions are not satisfied in virtualized data centers. We show that ignoring the data-locality issue in heterogeneous environments can noticeably reduce the MapReduce performance. In this paper, we address the problem of how to place data across nodes in a way that each node has a balanced data processing load. Given a dataintensive application running on a Hadoop MapReduce cluster, our data placement scheme adaptively balances the amount of data stored in each node to achieve improved data-processing performance. Experimental results on two real data-intensive applications show that our data placement strategy can always improve the MapReduce performance by rebalancing data across nodes before performing a data-intensive application in a heterogeneous Hadoop cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.