Abstract
We present a novel method for discovering parallel sentences in comparable, non-parallel corpora. We train a maximum entropy classifier that, given a pair of sentences, can reliably determine whether or not they are translations of each other. Using this approach, we extract parallel data from large Chinese, Arabic, and English non-parallel newspaper corpora. We evaluate the quality of the extracted data by showing that it improves the performance of a state-of-the-art statistical machine translation system. We also show that a good-quality MT system can be built from scratch by starting with a very small parallel corpus (100,000 words) and exploiting a large non-parallel corpus. Thus, our method can be applied with great benefit to language pairs for which only scarce resources are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.