Abstract
Pb(1) (-x)Ge(x)Te is a pseudobinary alloy of IV-VI narrow-gap semiconductor, of which maximum refractive index corresponds to the ferroelectric phase transition. Since the temperature coefficient of refractive index can be tunable from negative to positive by changing the Ge composition, it is possible to utilize the intrinsic property in the fabrication of infrared thin-film interference filters. In this letter, we report a narrow-bandpass filter, in which Pb(0.94)Ge(0.06)Te was substituted for PbTe. It found that the low-temperature stability of the filter is obviously improved: in the temperature range of 80-300K, the shift of center wavelength with temperature is reduced from 0.48nm.K(-1) to 0.23nm K(-1); furthermore, the peak transmittance of filter fabricated with Pb(0.94)Ge(0.06)Te is ~3% over that fabricated with PbTe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.