Abstract
Packet re-transmissions are a common technique to improve link reliability in low-power wireless networks. However, since packet re-transmissions increase the end-device energy consumption and the network load, a maximum number of re-transmissions per packet is typically set, also considering the duty-cycle limitations imposed by radio-frequency regulations. Moreover, the number of re-transmissions per packet is typically set to a constant value, meaning that all packet re-transmissions are treated the same regardless of actual channel conditions (i.e., multi-path propagation or internal/external interference effects). Taking that into account, in this paper we propose and evaluate the concept of re-transmission shaping, a mechanism that manages packet re-transmissions to maximize link reliability, while minimizing energy consumption and meeting radio-frequency regulation constraints. The proposed re-transmission shaping mechanism operates by keeping track of unused packet re-transmissions and allocating additional re-transmission when the instantaneous link quality decreases due to channel impairments. To evaluate the re-transmission shaping mechanism we use trace-based simulations using a IEEE~802.15.4g SUN data-set and two widely used metrics, the PDR (Packet Delivery Ratio) and the RNP (Required Number of Packets). The obtained results show that re-transmission shaping is a useful mechanism to improve link reliability of low-power wireless communications, as it can increase PDR from 77.9% to 99.2% while sustaining a RNP of 2.35 re-transmissions per packet, when compared to using a single re-transmission per packet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.