Abstract

This paper discusses linearity and robustness together for the first time, disclosing a way to improve them. It reveals that the nonlinear transconductance with device working at quasi-saturation region is significant factor of device linearity. The peak electric field is the root cause of electron velocity saturation. The high electric field at the drift region near the drain will cause more electron-hole pairs generated to trigger the parasitic NPN transistor turn-on, which may cause failure of device. Devices with different drift region doping are simulated with TCAD and measured. With LDD4 doping, the peak electric field in the drift region is reduced; the linear region of the transconductance is broadened. The adjacent channel power ratio is decreased by 2 dBc; 12% more power can be discharged before the NPN transistor turn-on, indicating a better linearity and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.