Abstract

To improve the Li+ kinetics and structural stability of high-capacity nickel-rich layered oxides, but not at the cost of reducing reversible capacity, a heterogeneous inactive-Al3+ doping strategy is proposed to build an Al3+-rich surface within a low doping amount. As anticipated, the heterogeneous inactive-Al3+ doped nickel-rich LiNi0.7Co0.15Mn0.15O2 shows a large reversible capacity of ∼215 mAh g–1, corresponding to a high energy density of ∼850 Wh kg–1. Moreover, it also exhibits long-term cycle lifespan, capacity retention of ∼90% after 200 cycles even at a high upper cutoff voltage of 4.5 V (vs Li/Li+), and improved thermal stability. Surprisingly, the heterogeneous inactive-Al3+ doped electrode shows a high capacity of ∼145 mAh g–1 even at a high rate of 10C, which corresponds to ∼70% capacity retention at 0.1C, due to the enhanced Li+ kinetics. Also this heterogeneous inactive-ion doped approach is capable of being readily expanded to other types of layered, spinel and olivine cathodes to enhance ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call