Abstract

Numerous variations of Particle Swarm Optimization (PSO) algorithms have been recently developed, with the best aim of escaping from local minima. One of these recent variations is PSO-LA model which employs a Learning Automata (LA) that controls the velocity of the particle. Another variation of PSO enables particles to dynamically search through global and local space. This paper presents a Dynamic Global and Local Combined Particle Swarm Optimization based on a 3-action Learning Automata (DPSOLA). The embedded learning automaton accumulates the information from individuals, local best and global best particles then combines them to navigate the particle through the problem space. The proposed algorithm has been tested on eight benchmark functions with different dimensions. The work is unique from its test bed; evaluations contain large population size (150) and high dimension (150). The results show that, fitness and convergence pace is better than traditional PSO, DGLCPSO and previous PSO based LA algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.