Abstract
Lepage and Mackenzie have shown that tadpole renormalization and systematic improvement of lattice perturbation theory can lead to much improved numerical results in lattice gauge theory. It is shown that lattice perturbation theory using the Cayley parametrization of unitary matrices gives a simple analytical approach to tadpole renormalization, and that the Cayley parametrization gives lattice gauge potentials gauge transformations close to the continuum form. For example, at the lowest order in perturbation theory, for SU(3) lattice gauge theory, at $\beta=6,$ the `tadpole renormalized' coupling $\tilde g^2 = {4\over 3} g^2,$ to be compared to the non-perturbative numerical value $\tilde g^2 = 1.7 g^2.$
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.