Abstract
It has been known for some time that the well-established large mixing angle (LMA) solution to the observed solar neutrino deficit fails to predict a flat energy spectrum for Super-Kamiokande as opposed to what the data indicates. It also leads to a Chlorine rate which appears to be too high as compared to the data. We investigate the possible solution to these inconsistencies with nonstandard neutrino interactions, assuming that they come as extra contributions to the ${\ensuremath{\nu}}_{\ensuremath{\alpha}}{\ensuremath{\nu}}_{\ensuremath{\beta}}$ and ${\ensuremath{\nu}}_{\ensuremath{\alpha}}e$ vertices that affect both the propagation of neutrinos in the Sun and their detection. We find that, among the many possibilities for nonstandard couplings, only the diagonal imaginary ones lead to a solution to the tension between the LMA predictions and the data, implying neutrino instability in the solar matter. Unitarity requirements further restrict the solution and a neutrino decay into an antineutrino and a Majoron within the Sun is the one favored. Antineutrino probability is however too small to open the possibility of experimentally observing antineutrinos from the Sun due to NSI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.