Abstract
The pore size distribution of konjac glucomannan (KGM)-based aerogels seriously impacted the air filtration efficiency and filtration resistance. This study aimed to investigate the pore size distribution control of KGM-based aerogels through total solid concentration of the sol and to improve the filtration performance by preparing aerogel stacks, which were made by combining KGM-based aerogels with different pore size distribution (range: 0–180 μm). Results indicated that with increased total solid concentration from 50% to 100% of the origin formulae, aerogel pore size became smaller and the porosity was decreased for all the three sample formulae. Meanwhile, the aerogel mechanical property and filtration efficiency were both strengthened with increased total solid concentration, but the air resistance became significantly higher. The changing extent and rule were influenced by the sample components (KGM, starch, gelatin, wheat straw). The aerogel stacks prepared by in series combining the aerogel pieces with different pore size distribution (from large size to small size) was found to improve filtration efficiency (e.g. from 70% to 80% for K1G2S4WS2) and significantly lower the air resistance (e.g. from 270 Pa to 190 Pa for K1G2S4WS2). This study could guide the filtration performance improvement of aerogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.