Abstract

Graphene has been widely used as new generation reinforcing nanofiller to achieve significantly improved mechanical properties in composites. However, its reinforcing effect has been considerably affected by the poor interfacial strength between graphene and the matrix. By using molecular dynamics simulations, the present work explores an effective route to improve the interfacial shear strength (ISS) of graphene sheets through the introduction of mechanically induced wrinkles that are formed by applying shear/compressive strains to graphene. The slide-out tests of a wrinkled graphene sliding over the graphene substrate show that the strain-induced wrinkles in graphene slider gives rise to larger surface roughness which leads to stronger interfacial interactions between graphene layers and consequently, significant improvement in ISS. Compared with compression induced wrinkles, shear induced wrinkles are found to be much more effective in enhancing ISS. Our results indicate that applying mechanical pre-strain, in particular, shear strain to graphene is a very useful strategy to improve its reinforcing effect in composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.