Abstract

This paper introduces a new method for improved integrated angle sensing in the foldable robot joints (hinges), using low-cost inkjet printed sensors and a novel physical intelligence based compensation approach. Silver nanoparticle angle sensors are inkjet printed on a flexible PET substrate as a hinge material and implemented as pairs of compression and tension side folding individuals into a rigid experimental setup. Resulting combined signals improved the individual sensor responses due to their compensating physical characteristics, and gave the far best performances in the existing literature in terms of linearity, sensor life-time, static and cyclic drift, hysteresis and dynamic dependency. Proposed approach is promising for eliminating the major limitations on the printed sensor use in flexible hinges and paving the way to reliable, fully soft and easy-to-fabricate all-integrated foldable robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.