Abstract

Indoor air pollution has proven negative impacts on the urban population in many developing countries. In Kuala Lumpur, high-rise housing programmes are not addressing IAQ and thermal comfort. As household incomes rise, residents are resorting to retro-fitting wall mounted split, air conditioning units; a strategy that is neither cost nor carbon effective. This paper reports on the results of computer modelling in conjunction with scale model trials (1:5) of a ‘Dynamic-Hybrid Air Permeable Ceiling’ (DHAPC) designed to filter, cool and dehumidify, the incoming air mass. This filter membrane, when combined with activated charcoal, reduced carbon monoxide, sulphur dioxide, benzene and particulate levels by up to 90%. These techniques now require to be replicated at 1:1 scale; however, the initial data suggest that such an approach, could make a major contribution to improving indoor air quality and thermal comfort with a much reduced carbon penalty. Practical application: Air pollution is now being recognised as having major negative impacts on public health. The use of insulation, as a large area and volume air filter, would appear to be a highly effective technique to reduce particulate matter, and when combined with activated charcoal that absorbs/adsorbs toxic gasses, can significantly improve indoor air quality in cities across the world that are presently exceeding WHO air quality guidelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.