Abstract
Obtaining network-like morphology (rubber particles are unevenly distributed in the matrix, forming a discontinuous rubber network structure) has been considered to be an effective strategy to optimize the toughness of rubber-toughened polymers. However, it is very difficult to achieve using conventional processing method. In this work, taking elastomer-toughened polylactide (PLA) as an example, we attempt to use hydrophilic silica (SiO2) nanoparticles with self-networking capability to control the phase morphology and the mechanical properties of PLA/poly(ether)urethane (PU) (85/15) blend. It is interesting to find that the selective localization of SiO2 nanoparticles in the PU phase and at the phase interface induces the morphological change from a common sea-island structure to a unique network-like structure constructed by discrete PU particles with irregular shapes, thus giving rise to a remarkable improvement in the impact toughness of the blend with strength and modulus unaffected. The formation of the network-like structure is attributed to the synergistic effect between the self-networking of the interface-localized SiO2 and the enhanced elasticity of the SiO2-localized PU phase. This inspiring result proves the introduction of nanoparticles with self-networking capability into polymers blends to be a universal platform to design their performance via tuning the phase structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.