Abstract

Content-based image retrieval (CBIR) has been an active research topic in the last decade. Multiple feature extraction and representation is one of the most important issues in the CBIR. In this paper, we propose a new CBIR method based on an efficient integration of texture and shape features. The texture features are extracted on the decomposed images processed by the optimal non-subsampled shearlet transform (NSST), and are represented by the high-frequency sub-band coefficients, which can be modeled by Bessel K Form (BKF) distribution; the shape features are represented by low-order quaternion polar harmonic transforms (QPHTs). The two kinds of features are then integrated by a weighted distance measurement, where Kullback-Leibler distance (KLD) and Euclidean distance (ED) are used for texture and shape features respectively. The integration of shape and texture information provides a robust feature set for image retrieval. Experimental results on standard benchmarks show significant improvements on retrieval performance using the proposed method compared with previous state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call