Abstract
ABSTRACT Weld defects of skin-skeleton structures are invisible and image-based visual inspections using deep learning neural networks are in demand. The main limitation of previous detection algorithms is interference information in images. The reflective light and uneven brightness distribution hinder algorithms to achieve higher detection reliability. In this work, a novel supervision strategy for defects detection algorithms was proposed to break the limitation. A new semantic gate convolution block was developed to help the neural networks to distinguish between targets and interference. The block utilised semantic segmentation labels and a gate function to control the information transmitted to the detection output. Additionally, a new category-pixel-accuracy loss function was adopted to improve the effectiveness of semantic features. The new function reduced the effects of negative pixels to avoid over emphasis on semantic completeness, thus the ineffective features of interference could be eliminated. The results indicated that the back-propagated gradients from the supervision part taught the backbone networks to focus on correct objects instead of interference. To testify the validity of the current method, the algorithms was verified in burns and collapse defects. The detection accuracy under the new semantic supervision reached 99.1%, which was superior to common CNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.