Abstract

To increase the low yield and selectivity of aromatic hydrocarbons during the biomass pyrolysis process, we torrefied the biomass and then co-pyrolyzing with plastics such as high-density polyethylene (HDPE), polystyrene (PS), ethylene–vinyl acetate (EVA) and polypropylene (PP) and also single and dual catalyst layouts were investigated by Py-GC/MS. The results showed that non-catalytic fast pyrolysis (CFP) of raw bagasse (RBG) generated no aromatics. After torrefaction non-CFP of torrefied bagasse (TBG) generated low aromatic yield. Indicating that torrefaction would enhance the proportion of aromatics during the pyrolysis process. The CFP of TBG 200°C and TBG 240°C over ZSM-5 produced the total aromatic yield of 1.96 and 1.88 times higher, respectively, compared to non-CFP of TBG. Furthermore, the addition of plastic could increase H/Ceff ratio of the mixture, consequently, increase the yield of aromatic compounds. Among the various torrefied-bagasse/plastic mixtures, the CFP of TBG/EVA (7:3 ratio) mixture generated the highest the total aromatic yield of 7.7 times more than the CFP of TBG alone. The dual catalyst layout could enhance the yield of aromatics hydrocarbons. The dual-catalytic co-pyrolysis of TBG 200°C /plastic (1:1) ratio over USY (ultra-stable Y zeolite)/ZSM-5, improved the total aromatics yield by 4.33 times more than the catalytic pyrolysis of TBG 200oC alone over ZSM-5 catalyst. The above results showed that the yield and selectivities of light aromatic hydrocarbons can be improved via catalytic co-pyrolysis and dual catalytic co-pyrolysis of torrefied-biomass with plastics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call