Abstract

Unlike the traditional model, the end-to-end (E2E) ASR model does not require speech information such as a pronunciation dictionary, and its system is built through a single neural network and obtains performance comparable to that of traditional methods. However, the model requires massive amounts of training data. Recently, hybrid CTC/attention ASR systems have become more popular and have achieved good performance even under low-resource conditions, but they are rarely used in Central Asian languages such as Turkish and Uzbek. We extend the dataset by adding noise to the original audio and using speed perturbation. To develop the performance of an E2E agglutinative language speech recognition system, we propose a new feature extractor, MSPC, which uses different sizes of convolution kernels to extract and fuse features of different scales. The experimental results show that this structure is superior to VGGnet. In addition to this, the attention module is improved. By using the CTC objective function in training and the BERT model to initialize the language model in the decoding stage, the proposed method accelerates the convergence of the model and improves the accuracy of speech recognition. Compared with the baseline model, the character error rate (CER) and word error rate (WER) on the LibriSpeech test-other dataset increases by 2.42% and 2.96%, respectively. We apply the model structure to the Common Voice—Turkish (35 h) and Uzbek (78 h) datasets, and the WER is reduced by 7.07% and 7.08%, respectively. The results show that our method is close to the advanced E2E systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.