Abstract

Two highly branched glucose polymers with similar structures--starch and glycogen--have important relations to human health. Slowly digestible and resistant starches have desirable health benefits, including the prevention and alleviation of metabolic diseases and prevention of colon cancer. Glycogen is important in regulating the use of glucose in the body, and diabetic subjects have an anomaly in their glycogen structure compared with that in healthy subjects. This paper reviews the biosynthesis-structure-property relations of these polymers, showing that polymer characterization produces knowledge which can be useful in producing healthier foods and new drug targets aimed at improving glucose storage in diabetic patients. Examples include mathematical modeling to design starch with better nutritional values, the effects of amylose fine structures on starch digestibility, the structure of slowly digested starch collected from in vitro and in vivo digestion, and the mechanism of the formation of glycogen α particles from β particles in healthy subjects. A new method to overcome a current problem in the structural characterization of these polymers using field-flow fractionation is also given, through a technique to calibrate evaporative light scattering detection with starch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.