Abstract
Background: Human cortical primary sulci are relatively stable landmarks and commonly observed across the population. Despite their stability, the primary sulci exhibit phenotypic variability. New Method: We propose a fully automated pipeline that integrates both sulcal curve extraction and labeling. In this study, we use a large normal control population (n = 1424) to train neural networks for accurately labeling the primary sulci. Briefly, we use sulcal curve distance map, surface parcellation, mean curvature and spectral features to delineate their sulcal labels. We evaluate the proposed method with 8 primary sulcal curves in the left and right hemispheres compared to an established multi-atlas curve labeling method. Results: Sulcal labels by the proposed method reasonably well agree with manual labeling. The proposed method outperforms the existing multi-atlas curve labeling method. Comparison with Existing Method: Significantly improved sulcal labeling results are achieved with over 12.5 and 20.6 percent improvement on labeling accuracy in the left and right hemispheres, respectively compared to that of a multi-atlas curve labeling method in eight curves (p≪0.001, two-sample t-test). Conclusion: The proposed method offers a computationally efficient and robust labeling of major sulci.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.