Abstract
Abstract Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at these spatial scales due to uncertainties in initial meteorological conditions and/or grid-scale cloud microphysics schemes. In particular, it is still unclear to what extent a subgrid-scale convection scheme could be modified to bring in scale awareness for improving high-resolution short-term precipitation forecasts in the WRF Model. To address these issues, the authors introduced scale-aware parameterized cloud dynamics for high-resolution forecasts by making several changes to the Kain–Fritsch (KF) convective parameterization scheme in the WRF Model. These changes include subgrid-scale cloud–radiation interactions, a dynamic adjustment time scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting condensation level–based entrainment methodology that includes scale dependency. A series of 48-h retrospective forecasts using a combination of three treatments of convection (KF, updated KF, and the use of no cumulus parameterization), two cloud microphysics schemes, and two types of initial condition datasets were performed over the U.S. southern Great Plains on 9- and 3-km grid spacings during the summers of 2002 and 2010. Results indicate that 1) the source of initial conditions plays a key role in high-resolution precipitation forecasting, and 2) the authors’ updated KF scheme greatly alleviates the excessive precipitation at 9-km grid spacing and improves results at 3-km grid spacing as well. Overall, the study found that the updated KF scheme incorporated into a high-resolution model does provide better forecasts for precipitation location and intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.