Abstract

We evaluate the $e^- e^+ \to e^- e^+ +h$ process through the $ZZ$ fusion channel at the International Linear Collider (ILC) operating at $500$ GeV and $1$ TeV center of mass energies. We perform realistic simulations on the signal process and background processes. With judicious kinematic cuts, we find that the inclusive cross section can be measured to $2.9\%$ after combining the $500$ GeV at $500 \text{fb}^{-1}$ and $1$ TeV at $1~ \text{ab}^{-1}$ runs. A multivariate log-likelihood analysis further improves the precision of the cross section measurement to $2.3\%$. We discuss the overall improvement to model-independent Higgs width and coupling determinations and demonstrate the use of different channels in distinguishing new physics effects in Higgs physics. Our study demonstrates the importance of the $ZZ$ fusion channel to Higgs precision physics, which has often been neglected in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.