Abstract
AbstractA low-cost continuous passive motion (CPM) machine, the Gannon Exoskeleton for Arm Rehabilitation (GEAR), was designed. The focus of the machine is on the rehabilitation of primary functional movements of the arm. The device developed integrates two mechanisms consisting of a four-bar linkage and a sliding rod prismatic joint mechanism that can be mounted to a normal chair. When seated, the patient is connected to the device via a padded cuff strapped on the elbow. A set of springs have been used to maintain the system stability and help the lifting of the arm. A preliminary analysis via analytical methods is used to determine the initial value of the springs to be used in the mechanism given the desired gravity compensatory force. Subsequently, a multibody simulation was performed with the software simwise 4D by Design Simulation Technologies (DST). The simulation was used to optimize the stiffness of the springs in the mechanism to provide assistance to raising of the patient's arm. Furthermore, the software can provide a finite element analysis of the stress induced by the springs on the mechanism and the external load of the arm. Finally, a physical prototype of the mechanism was fabricated using polyvinyl chloride (PVC) pipes and commercial metal springs, and the reaching space was measured using motion capture. We believed that the GEAR has the potential to provide effective passive movement to individuals with no access to postoperative or poststroke rehabilitation therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.