Abstract

Interest in using collimation for spot scanning proton therapy has recently increased in an attempt to improve the lateral penumbra. To investigate the advantages of such an approach for complex targets, a plan comparison between uncollimated and collimated beam spots was performed for patients with head and neck cancer. For 10 patients with head and neck cancer, previously treated with spot scanning proton therapy, uncollimated and collimated treatment plans were created using an in-house treatment-planning system capable of modeling asymmetric-beamlet dose distributions resulting from the use of a dynamic collimation system. Both uncollimated and collimated plans reproduced clinically delivered plans in terms of target coverage. A relative plan comparison was performed using both physical and radiobiological metrics on the organs at risk. The dynamic collimation system improved dose-distribution conformity while preserving target coverage. The median reduction of the mean dose to the esophagus, uninvolved larynx, and uninvolved parotids were -11.9% (minimum to maximum, -6.4% to -24.1%), -7.2% (-0.8% to -60.1%), and -5.2% (-0.2% to -21.5%), respectively, and depended on the organ location relative to the target and radiation beam angle. The collimation did not improve dose to some organs at risk surrounded by the target or located upstream of Bragg peaks because of the priority on the target coverage. In spot scanning proton therapy, the dynamic collimation system generally affords better target conformity, which results in improvement in organ-at-risk sparing in the head and neck region while preserving target coverage. However, the benefits of collimation and the increased complexity should be considered for each patient. Patients with large bilateral targets or organs at risk surrounded by the target showed the least benefit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.