Abstract

Surface electromyography (sEMG), a human-machine interface for gesture recognition, has shown promising potential for decoding motor intentions, but a variety of nonideal factors restrict its practical application in assistive robots. In this paper, we summarized the current mainstream gesture recognition strategies and proposed a gesture recognition method based on multimodal canonical correlation analysis feature fusion classification (MCAFC) for a nonideal condition that occurs in daily life, i.e., posture variations. The deep features of the sEMG and acceleration signals were first extracted via convolutional neural networks. A canonical correlation analysis was subsequently performed to associate the deep features of the two modalities. The transformed features were utilized as inputs to a linear discriminant analysis classifier to recognize the corresponding gestures. Both offline and real-time experiments were conducted on eight non-disabled subjects. The experimental results indicated that MCAFC achieved an average classification accuracy, average motion completion rate, and average motion completion time of 93.44%, 94.05%, and 1.38 s, respectively, with multiple dynamic postures, indicating significantly better performance than that of comparable methods. The results demonstrate the feasibility and superiority of the proposed multimodal signal feature fusion method for gesture recognition with posture variations, providing a new scheme for myoelectric control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.