Abstract

Grinding fluid is commonly applied to control grinding defects caused by high grinding zone temperature. Delivery of fluid to the grinding zone is obstructed by the formation of a stiff air layer around the grinding wheel. This results in huge wastage of grinding fluid. In the present paper, results of using a pneumatic barrier and a compound nozzle are discussed with respect to delivering fluid deep into the grinding zone. Grinding fluid passing through the grinding wheel contact zone is measured under different modes of fluid delivery using a flood cooling, or a compound, nozzle, with or without the application of a pneumatic barrier. It is found that the system using a pneumatic barrier with flood cooling nozzle, and that employing a compound nozzle perform better than the flood cooling nozzle. A compound nozzle along with a pneumatic barrier renders substantially less wastage of grinding fluid even at a low flow rate of grinding fluid. Above a fluid discharge of 475 ml/min, the compound nozzle alone shows effective penetration of grinding fluid through the grinding zone. Reduction of grinding force, specific energy and roughness of ground surface are obtained after using compound nozzle fluid delivery system. Compound nozzle may be used instead of flood cooling nozzle as it improves grinding performance even using 52.5 % less discharge of grinding fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call