Abstract
The solid-phase annealing of the mesophase pitch spun fiber was examined between the glass transition ( T g) and softening ( T s) temperatures of the pitch to improve the graphitization degree of the graphitized fiber through recovering or further improving the stacking height of the mesogen molecules in the spun fiber, since the rapid spinning reduced markedly stacking height in the as-spun fiber. A naphthalene mesophase pitch as received carried stacking height of 2.9 nm which was markedly reduced to 1.7 nm by spinning at 230 m/min, giving Lc=40 nm for its graphitized fiber. Annealing at 206 °C improved the stacking height of the spun fiber to 2.4 nm and Lc(002) of the graphitized fiber to 54 nm. Annealing of the methylnaphthalene mesophase pitch fiber at 200 °C was much more effective in improving the stacking height from 3.5 to 5.0 nm and its graphitized fiber to Lc=91 from 40 nm. Such an improved graphitization degree led to improved thermal conductivity and tensile modulus of the graphitized fiber. It must be noted that the annealing of the spun fiber reduced its stabilization rate, indicating densification of molecular stacking in the fiber. The transformation scheme of mesophase pitch into graphite fibers is discussed to clarify the roles of molecular stacking in the clusters and their arrangement in the mesophase pitch fiber during the carbon manufacturing process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.