Abstract

Maleic anhydride (MA) grafted polylactic acid (PLA) acting as reactive compatibilizer for PLA blends and composites has been reported. However, melt free-radical grafting of MA on PLA is often subject to steric and electron effects of the substituents in the monomer and low initiation efficiency, yielding low grafting efficiency (Eg). In this work, five dicarboxylic anhydride monomers, including MA, itaconic anhydride (IA), cis-1,2,3,6-tetrahydrophthalic anhydride (TA), 4-allyltrimellitate anhydride (ATA), and 4-methacryloxyethyl trimellitate anhydride (META), were grafted onto PLA, and the effect of steric hindrance on Eg was assessed. It is noted that Eg values followed the order of ATA > META ≫ MA ≥ TA > IA. The introduction of styrene as a comonomer selectively increased the Eg values of three electron-deficient monomers, MA, IA, and META, while Sn(Oct)2 as a reducing agent increased Eg for all monomers. Both styrene and Sn(Oct)2 exhibited a synergistic effect when used in grafting MA, IA, and META.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.