Abstract

On cc-NUMA multi-processors, the non-uniformity of main memory latencies motivates the need for co-location of threads and data. We call this special form of data locality, geographical locality, as one aspect of the non-uniformity is the physical distance between the cc-NUMA nodes. We compare the well established first-touch strategy to an application-initiated page migration strategy as means of increasing the geographical locality for a set of important scientific applications.The main conclusions of the study are: (1) that geographical locality is important for the performance of the applications, (2) that application-initiated migration outperforms the first-touch scheme in almost all cases, and in some cases even results in performance which is close to what is obtained if all threads and data are allocated on a single node.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.