Abstract

Novel gas sensors have been realized by decorating clusters of tubular Aerographite with CdTe using magnetron sputtering techniques. Subsequently, individual microtubes were separated and electrically contacted on a SiO2/Si substrate with pre-patterned electrodes. Cathodoluminescence, electron microscopy and electrical characterization prove the successful formation of a polycrystalline CdTe thin film on Aerographite enabling an excellent gas response to ammonia. Furthermore, the dynamical response to ammonia exposure has been investigated, highlighting the quick response and recovery times of the sensor, which is highly beneficial for extremely short on/off cycles. Therefore, this gas sensor reveals a large potential for cheap, highly selective, reliable and low-power gas sensors, which are especially important for hazardous gases such as ammonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.