Abstract
Many key aquifers and oil reservoirs are in carbonate rocks. Understanding the flow behavior within this commonly complex pore space requires new perspectives and technology in order to improve carbonate aquifer and reservoir characterization. Dissolution of carbonates is related to flow; hence, quantifying the size of dissolution vugs on carbonate outcrops can help characterize controls on flow, namely matrix permeability and fracture connectivity. LIDAR (light detection and ranging) scans, combined with high-resolution photography, enable us to both measure vugs' areas and assess spatial relationships between vugs, beds, and fractures. We developed a method of obtaining and interpreting necessary vug, bed, and fracture data on the basis of these technologies. Application of this method on a Cretaceous Edwards Group outcrop in Texas (United States) revealed a significant correlation between the relative vug area of beds obtained remotely and air permeability measured in plugs extracted from these beds (R2 = 0.94, P = 0.001). The total area of vugs intersected by fractures was used to establish a probability density function of fracture lengths that can improve flow modeling of the reservoir. These findings show the potential of using LIDAR and photo images in reservoir characterization by data analysis of geological features, in addition to their use for accurate mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.