Abstract

Drilling conditions involving high mean and deviatory stresses, and natural fractures in the Cooper Basin present challenges in drilling and introduce wellbore rugosities, leaving a damaged wellbore subject to a stress cage effect. Fracture initiations have been problematic in vertical Cooper Basin wells, exhibiting high initiation and treating pressure frac treatments, and with high stress conditions posing greater risks in non-vertical completions. While far-field fracture complexity should be simplified, the near wellbore complexity results in reduced fracture conductivity. The authors believe that present drilling practices and wellbore azimuths may be contributing to sub-optimal hydraulic fracture initiations and complexities. Present analytical modelling methodologies can derive initiation pressures for circular wellbores, but require more complex numerical models to include flaws and ellipticity to represent natural fractures and wellbore rugosities. This study compares initiation pressures and presents graphical results, comparing circular and elliptical wellbore cases with flaws. This extended abstract outlines the criteria used in these models and remarks on areas needing further research and model development. The authors also propose improved drilling techniques to achieve more stable, smoother wellbores, potentially reducing some rugosity and drilling induced fractures. By using data from recent research and other cases with complex stress environments, it is proposed that initiation pressures might be reduced by inclining wells for hydraulic fracturing treatments in a favourable alignment in the maximum horizontal stress direction (σH-Max), and implementing completion techniques that aid better fracture initiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.