Abstract
Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for effective reservoir management. In this research, the auto-regressive integrated moving average (ARIMA) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting annual runoff time series. First, the original annual runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data characteristics. Then each IMF component and residue is forecasted, respectively, through an appropriate ARIMA model. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Three annual runoff series from Biuliuhe reservoir, Dahuofang reservoir and Mopanshan reservoir, in China, are investigated using developed model based on the four standard statistical performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and that the proposed EEMD-ARIMA model can significantly improve ARIMA time series approaches for annual runoff time series forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.